# NON-LINEAR VIBRATIONS OF A SLIGHTLY CURVED BEAM RESTING ON A NON-LINEAR ELASTIC FOUNDATION 

H. R. Öz, M. Pakdemirli, E. Özkaya and M. Yilmaz<br>Department of Mechanical Engineering, Celal Bayar University, Muradiye, 45140 Manisa, Turkey

(Received 28 March 1995, and in final form 21 November 1997)


#### Abstract

In this study, non-linear vibrations of slightly curved beams are investigated. The curvature is taken as an arbitrary function of the spatial variable. The initial displacement is not due to buckling of the beam, but is due to the geometry of the beam itself. The ends of the curved beam are on immovable simple supports and the beam is resting on a non-linear elastic foundation. The immovable end supports result in the extension of the beam during the vibration and hence introduces further non-linear terms to the equations of motion. The integro-differential equations of motion are solved analytically by means of direct application of the method of multiple scales (a perturbation method). The amplitude and phase modulation equations are derived for the case of primary resonances. Both free and forced vibrations with damping are investigated. Effect of non-linear elastic foundation as well as the effect of curvature on the vibrations of the beam are examined. It is found that the effect of curvature is of softening type. For sufficiently high values of the coefficients, the elastic foundation may suppress the softening behaviour resulting in a hardening behaviour of the non-linearity. © 1998 Academic Press Limited


## 1. INTRODUCTION

The vibrations of beams under immovable end conditions have been studied in detail. The immovable ends cause extensions axially in the beam which introduces integral type cubic non-linearities into the equations of motion. For straight beams, the pioneering work is due to Woinowsky-Krieger [1] who investigated the free oscillations of a bar having an initial tensile force. Srinivasan [2] applied the Ritz-Galerkin technique to analyse the large amplitude of free oscillation of beams and plates with stretching. In addition to stretching, Wrenn and Mayers [3] included the effects of transverse shear and rotary inertia. Nayfeh and Mook [4] reviewed the relevant work up to 1979. Pakdemirli and Nayfeh [5] investigated a beam-mass-spring system where the non-linearities arise due to stretching and non-linear spring supporting the mass. Recently Özkaya et al. [6] investigated a concentrated mass on a Euler-Bernoulli beam which was supported by immovable end conditions leading to stretching during the vibrations.
The effect of stretching has also been included in the vibrations of slightly curved beams or shallow arcs. Among the many contributions in this area, a few of them are mentioned here: Rehfield [7] derived the equations of motion of a shallow arch with an arbitrary rise function and studied the free vibrations approximately. A moderately thick clamped beam with a sinusoidal rise function is studied by Singh and Ali [8]. Finally, Yamaki and Mori [9] analysed a clamped buckled beam by considering the first three symmetric modes and used a combination of Galerkin and Harmonic Balance methods.


Figure 1. A simply supported slightly curved beam resting on a non-linear elastic foundation.

This study, is concerned with a simply supported slightly curved beam resting on an elastic foundation with cubic non-linearities. The equations of motion due to Rehfield [7] are modified by adding damping, forcing and non-linear elastic foundation terms. The initial curvature of the beam is not due to buckling; rather, the beam is considered to be fabricated with slight curvature. The equations of motion are solved by the method of multiple scales, a perturbation technique. With the curvature function assumed to be of order 1 and the amplitude of vibrations to be of order $\epsilon$, the amplitude and phase modulation equations are derived. Free vibrations and forced vibrations with damping are investigated in detail. The effects of the elastic foundation, axial stretching and curvature on the vibrations of the beam are analysed. It is found that the non-linearities due to curvature are of softening type whereas those of elastic foundation are of hardening type.

## 2. EQUATIONS OF MOTION

The system considered is a simply supported slightly curved beam resting on a non-linear elastic foundation as shown in Figure 1. For the beam shown, $A$ is the cross-section of the beam, $I$ is the moment of inertia of the beam cross-section with respect to the neutral axis, $\rho$ is the density, $w^{*}$ is the transverse displacement, $Z_{0}^{*}\left(x^{*}\right)$ is the arbitrary initial rise function, $k_{1}$ and $k_{2}$ are the linear and non-linear coefficients of the elastic foundation, respectively, and $L$ is the projected length of the beam (a list of notation is given in the Appendix). Following Rehfield [7], one can write the equations of motion as

$$
\begin{align*}
\rho A \ddot{w}^{*}+E I w^{* i v}+\mu^{*} \dot{w}^{*} & +k_{1} w^{*}+k_{2} w^{* 3} \\
& =\frac{E A}{L} \int_{0}^{L}\left(Z_{0}^{* \prime} w^{* \prime}+\frac{1}{2} w^{* \prime 2}\right) \mathrm{d} x^{*}\left(w^{* \prime \prime}+Z_{0}^{* \prime \prime}\right)+F^{*} \cos \Omega^{*} t^{*} \tag{1}
\end{align*}
$$

Here damping, forcing and non-linear elastic foundation terms are included. $x^{*}$ is the spatial variable along the projected length and $t^{*}$ denotes time. ()' represents derivatives with respect to the spatial variable and $(\cdot)$ represents derivatives with respect to time.

For convenience, the equations are made dimensionless by defining

$$
\begin{equation*}
x=x^{*} / L, \quad t=\left(r / L^{2}\right) \sqrt{E / \rho} t^{*}, \quad w=w^{*} / r, \quad Z_{0}=Z_{0}^{*} / r \tag{2}
\end{equation*}
$$

where $r$ is the radius of gyration of the beam cross-section. Substituting dimensionless quantities (2) into equation (1), one obtains the dimensionless form of the equation:

$$
\begin{equation*}
\ddot{w}+w^{i v}+2 \bar{\mu} \dot{w}+\alpha_{1} w+\alpha_{2} w^{3}=\bar{F} \cos \Omega t+\int_{0}^{1}\left(Z_{0}^{\prime} w^{\prime}+\frac{1}{2} w^{\prime 2}\right) \mathrm{d} x\left(Z_{0}^{\prime \prime}+w^{\prime \prime}\right) . \tag{3}
\end{equation*}
$$

Here new dimensionless parameters are defined as follows:

$$
\begin{gather*}
2 \bar{\mu}=\mu^{*} L^{2} / A \sqrt{\rho E}, \quad \bar{F}=F^{*} L^{4} / E I r, \quad \Omega=\Omega^{*}\left(L^{2} / r\right) \sqrt{\rho / E} \\
\alpha_{1}=k_{1} L^{4} / E I, \quad \alpha_{2}=k_{2} L^{4} / E A \tag{4}
\end{gather*}
$$

The boundary conditions for the problem are

$$
\begin{equation*}
w(0, t)=w^{\prime \prime}(0, t)=w(1, t)=w^{\prime \prime}(1, t)=0 . \tag{5}
\end{equation*}
$$

## 3. ANALYTICAL SOLUTION

To seek approximate analytical solutions of equation (3) subject to boundary conditions (5), the method of multiple scales (a perturbation technique) [10] is used. This method is applied directly to the partial differential system (direct-perturbation method). The common method of discretizing the equations first and then applying perturbations yields less accurate results for finite mode truncations and higher order perturbation schemes [11-18]. When the eigenvalues are not orthogonal, the direct-perturbation method is still applicable. In contrast, a transformation to another form for the equations is necessary for the discretization perturbation method [19]. Solutions are assumed to be of the form

$$
\begin{equation*}
w(x, t, \epsilon)=\epsilon w_{1}\left(x, T_{0}, T_{1}, T_{2}\right)+\epsilon^{2} w_{2}\left(T_{0}, T_{1}, T_{2}\right)+\epsilon^{3} w_{3}\left(x, T_{0}, T_{1}, T_{2}\right)+\ldots \tag{6}
\end{equation*}
$$

where $\epsilon$ is a small parameter indicating that the amplitudes of vibrations are small (weakly non-linear system) and $T_{0}=t, T_{1}=\epsilon t$, and $T_{2}=\epsilon^{2} t$ are the usual fast and slow time scales in the multiple scales method. The primary resonance case is considered and it is further assumed that $Z_{0}(x)$ is or order one: that is,

$$
\begin{equation*}
\bar{F}=\epsilon^{3} F, \quad \bar{\mu}=\epsilon^{2} \mu, \quad Z_{0} \sim O(1) \tag{7}
\end{equation*}
$$

Note that, excitation amplitude and damping are reordered so that their effects balance the cubic non-linearities. Derivatives with respect to time are written as follows:

$$
\begin{equation*}
\mathrm{d} / \mathrm{d} t=D_{0}+\epsilon D_{1}+\epsilon^{2} D_{2}+\ldots, \quad \mathrm{d}^{2} / \mathrm{d} t^{2}=D_{0}^{2}+2 \epsilon D_{0} D_{1}+\epsilon^{2}\left(D_{1}^{2}+2 D_{0} D_{2}\right)+\ldots \tag{8}
\end{equation*}
$$

In these equations $D_{n}=\partial / \partial T_{n}$. Substituting expressions (6)-(8) into equation (3) and separating each order of $\epsilon$, one obtains the following:
order $\epsilon$,

$$
\begin{equation*}
D_{0}^{2} w_{1}+w_{1}^{i v}+\alpha_{1} w_{1}-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} w_{1}^{\prime} \mathrm{d} x=0 \tag{9}
\end{equation*}
$$

order $\epsilon^{2}$,
$D_{0}^{2} w_{2}+w_{2}^{i v}+\alpha_{1} w_{2}-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} w_{2}^{\prime} \mathrm{d} x=\frac{1}{2} Z_{0}^{\prime \prime} \int_{0}^{1} w_{1}^{\prime 2} \mathrm{~d} x+w_{1}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} w_{1}^{\prime} \mathrm{d} x-2 D_{0} D_{1} w_{1} ;$
order $\epsilon^{3}$,

$$
\begin{align*}
D_{0}^{2} w_{3} & +w_{3}^{i v}+\alpha_{1} w_{3}-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} w_{3}^{\prime} \mathrm{d} x=w_{1}^{\prime \prime} \int_{0}^{1}\left(Z_{0}^{\prime} w_{2}^{\prime}+\frac{1}{2} w_{1}^{\prime 2}\right) \mathrm{d} x+w_{2}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} w_{1}^{\prime} \mathrm{d} x \\
& +Z_{0}^{\prime \prime} \int_{0}^{1} w_{1}^{\prime} w_{2}^{\prime} \mathrm{d} x+F \cos \Omega T_{0}-2 D_{0} D_{1} w_{2}-2 \mu D_{0} w_{1}-\left(2 D_{0} D_{2}+D_{1}^{2}\right) w_{1}-\alpha_{2} w_{1}^{3} \tag{11}
\end{align*}
$$

At order $\epsilon$, the solution may be represented by

$$
\begin{equation*}
w_{1}\left(x, T_{0}, T_{1}, T_{2}\right)=\left\{A\left(T_{1}, T_{2}\right) \mathrm{e}^{\mathrm{i} \omega T_{0}}+c c\right\} Y(x) \tag{12}
\end{equation*}
$$

where $c c$ denotes the complex conjugates of the preceeding terms. The mode shapes satisfy the following differential system:

$$
\begin{equation*}
Y^{i v}-\beta^{4} Y-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} Y^{\prime} \mathrm{d} x=0, \quad Y(0)=Y^{\prime \prime}(0)=Y(1)=Y^{\prime \prime}(1)=0 \tag{13,14}
\end{equation*}
$$

Here $\beta^{4}$ is defined to be

$$
\begin{equation*}
\beta^{4}=\omega^{2}-\alpha_{1} \tag{15}
\end{equation*}
$$

Defining

$$
\begin{equation*}
b=\int_{0}^{1} Z_{0}^{\prime} Y^{\prime} \mathrm{d} x \tag{16}
\end{equation*}
$$

one has

$$
\begin{equation*}
Y^{i v}-\beta^{4} Y-b Z_{0}^{\prime \prime}=0 \tag{17}
\end{equation*}
$$

By choosing a sinusoidal curvature function

$$
\begin{equation*}
Z_{0}=\sin \pi x \tag{18}
\end{equation*}
$$

the solutions can be obtained for two different cases. If $b=0$, the solutions are

$$
\begin{equation*}
Y=C \sin n \pi x, \quad \beta=n \pi, \quad n=2,3,4, \ldots \tag{19}
\end{equation*}
$$

If $b \neq 0$ then the solution is

$$
\begin{equation*}
Y=C \sin \pi x, \quad \beta=\sqrt[4]{3 / 2} \pi \tag{20}
\end{equation*}
$$

From the solvability condition at order $\epsilon^{2}$ (see details of finding solvability conditions in reference [10]) one obtains

$$
\begin{equation*}
D_{1} A=0, \quad A=A\left(T_{2}\right) \tag{21}
\end{equation*}
$$



Figure 2. Non-linear frequency versus amplitude for the first mode. $\alpha_{2}=10: \alpha_{1}=0(-) ; \alpha_{1}=10(--) ; \alpha_{1}=50$ $(---) ; \alpha_{1}=100(--)$.

A solution can be written at this order of the form

$$
\begin{equation*}
w_{2}=\left(A^{2} \mathrm{e}^{2 i \omega T_{0}}+c c\right) \phi_{1}(x)+2 A \bar{A} \phi_{2}(x) . \tag{22}
\end{equation*}
$$

If one normalizes the eigenfunctions at order $\epsilon$ by requiring $\int_{0}^{1} Y^{2} \mathrm{~d} x=1$, one has

$$
\begin{equation*}
Y(x)=\sqrt{2} \sin n \pi x \tag{23}
\end{equation*}
$$

Substituting equation (22) into equation (10) yields

$$
\begin{gather*}
\phi_{1}^{i v}-\left(4 \omega^{2}-\alpha_{1}\right) \phi_{1}-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} \phi_{1}^{\prime} \mathrm{d} x=\frac{1}{2} Z_{0}^{\prime \prime} \int_{0}^{1} Y^{\prime 2} \mathrm{~d} x+Y^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} Y^{\prime} \mathrm{d} x \\
\phi_{2}^{i v}+\alpha_{1} \phi_{2}-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} \phi_{2}^{\prime} \mathrm{d} x=\frac{1}{2} Z_{0}^{\prime \prime} \int_{0}^{1} Y^{\prime 2} \mathrm{~d} x+Y^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} Y^{\prime} \mathrm{d} x \\
\phi_{i}(0)=0, \quad \phi_{i}(1)=0, \quad \phi_{i}^{\prime \prime}(0)=0, \quad \phi_{i}^{\prime \prime}(1)=0, \quad i=1,2 . \tag{24}
\end{gather*}
$$

For the case $b=0(n \neq 1)$ the mode shapes at this order are

$$
\begin{equation*}
\phi_{1}=\frac{n^{2} \pi^{4}}{\left(8 n^{4}-3\right) \pi^{4}+6 \alpha_{1}} \sin \pi x, \quad \phi_{2}=-\frac{n^{2} \pi^{4}}{3 \pi^{4}+2 \alpha_{1}} \sin \pi x, \quad n=2,3, \ldots \tag{25}
\end{equation*}
$$

and for case $b \neq 0(n=1)$

$$
\begin{equation*}
\phi_{1}=\frac{\pi^{4}}{3 \pi^{4}+2 \alpha_{1}} \sin \pi x, \quad \phi_{2}=-\frac{3 \pi^{4}}{3 \pi^{4}+2 \alpha_{1}} \sin \pi x, \quad n=1 . \tag{26}
\end{equation*}
$$

The solution at order $\epsilon^{3}$ is written as

$$
\begin{equation*}
w_{3}\left(x, T_{0}, T_{2}\right)=\varphi\left(x, T_{2}\right) \mathrm{e}^{\mathrm{i} \omega T_{0}}+W\left(x, T_{0}, T_{2}\right)+c c \tag{27}
\end{equation*}
$$

The excitation frequency is taken as

$$
\begin{equation*}
\Omega=\omega+\epsilon^{2} \sigma \tag{28}
\end{equation*}
$$



Figure 3. Non-linear frequency versus amplitude for the first mode. $\alpha_{1}=10: \alpha_{2}=0(-) ; \alpha_{2}=10(--) ; \alpha_{2}=50$ $(--) ; \alpha_{2}=100(--)$.


Figure 4. Non-linear frequency versus amplitude for the second mode. $\alpha_{2}=10: \alpha_{1}=0(-) ; \alpha_{1}=10(---)$; $\alpha_{1}=50(---) ; \alpha_{1}=100(---)$.

Here $\sigma$ is a detuning parameter of $O(1), \varphi$ is the function for the secular terms and $W$ is the function for the non-secular terms. Inserting expressions (28), (27), (22) and (12) into equations (11) and considering only the terms producing secularities, one has

$$
\begin{gather*}
\varphi^{i v}-\left(\omega^{2}-\alpha_{1}\right) \varphi-Z_{0}^{\prime \prime} \int_{0}^{1} Z_{0}^{\prime} \varphi^{\prime} \mathrm{d} x=-2 \mathrm{i} \omega Y\left(D_{2} A+\mu A\right)+\frac{F}{2} \mathrm{e}^{\mathrm{i} \sigma T_{2}} \\
+A^{2} \bar{A}\left(-3 \alpha_{2} Y^{3}+b_{4} Y^{\prime \prime}+2 b_{5} Y^{\prime \prime}+b\left(\phi_{1}^{\prime \prime}+2 \phi_{2}^{\prime \prime}\right)+\frac{3}{2} n^{2} \pi^{2} Y^{\prime \prime}+b_{2} Z_{0}^{\prime \prime}+2 b_{3} Z_{0}^{\prime \prime}\right)  \tag{29}\\
\varphi(0)=0, \quad \varphi(1)=0, \quad \varphi^{\prime \prime}(0)=0, \quad \varphi^{\prime \prime}(1)=0 \tag{30}
\end{gather*}
$$

where

$$
\begin{gather*}
f=\int_{0}^{1} F Y \mathrm{~d} x, \quad b=\int_{0}^{1} Y^{\prime} Z_{0}^{\prime} \mathrm{d} x, \quad b_{1}=\int_{0}^{1} Y^{4} \mathrm{~d} x, \quad b_{2}=\int_{0}^{1} Y^{\prime} \phi_{1}^{\prime} \mathrm{d} x \\
b_{3}=\int_{0}^{1} Y^{\prime} \phi_{2}^{\prime} \mathrm{d} x, \quad b_{4}=\int_{0}^{1} Z_{0}^{\prime} \phi_{1}^{\prime} \mathrm{d} x, \quad b_{5}=\int_{0}^{1} Z_{0}^{\prime} \phi_{2}^{\prime} \mathrm{d} x, \quad \int_{0}^{1} Y^{2} \mathrm{~d} x=1 \tag{31}
\end{gather*}
$$

The homogeneous problem of equations (13) and (14) possesses a non-trivial solution. For the non-homogeneous problem of equations (29) and (30) to possess a solution, a solvability condition should be satisfied (see reference [10] for details of calculating this condition). For the present problem, the solvability condition requires

$$
\begin{equation*}
2 \mathrm{i} \omega\left(\mu A+A^{\prime}\right)+\lambda A^{2} \bar{A}-\frac{1}{2} f \mathrm{e}^{\mathrm{i} \sigma T_{2}}=0 \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=3 \alpha_{2} b_{1}+2 b b_{2}+4 b_{2} b_{3}+\frac{3}{2} n^{4} \pi^{4}+n^{2} \pi^{2} b_{4}+2 n^{2} \pi^{2} b \tag{33}
\end{equation*}
$$

Equation (32) represents the modulations in the complex amplitudes. If one writes them in the polar form

$$
\begin{equation*}
A\left(T_{2}\right)=\frac{1}{2} a\left(T_{2}\right) \mathrm{e}^{\mathrm{i} \theta\left(T_{2}\right)} \tag{34}
\end{equation*}
$$

substitutes into equation (32) and separates real and imaginary parts, one finally obtains

$$
\begin{equation*}
\omega a \gamma^{\prime}=a\left(\omega \sigma-\lambda a^{2} / 8\right)+\frac{1}{2} f \cos \gamma, \quad \omega a^{\prime}=-\omega \mu a+\frac{1}{2} f \sin \gamma \tag{35,36}
\end{equation*}
$$



Figure 5. Non-linear frequency versus amplitude for the second mode. $\alpha_{1}=10: \alpha_{2}=0(-) ; \alpha_{2}=10(---)$; $\left.\alpha_{2}=50(--) ; \alpha_{2}=100(--)\right)$.


Figure 6. Frequency-response curves for the first mode. $\mu=0 \cdot 2, f=5, \alpha_{2}=10: \alpha_{1}=0(-) ; \alpha_{1}=10(--)$; $\alpha_{1}=50(---) ; \alpha_{1}=100(---)$.
where $\gamma$ is defined to be

$$
\begin{equation*}
\gamma=\sigma T_{2}-\theta \tag{37}
\end{equation*}
$$

The response is found by substituting equations (37), (34), (28), (23), (22) and (12) into equation (6), and is
$w(x, t)=\epsilon a \cos (\Omega t-\gamma) \sqrt{2} \sin n \pi x+\epsilon^{2}\left(a^{2} / 2\right)\left(\cos [2(\Omega t-\gamma)] \phi_{1}(x)+\phi_{2}(x)\right)+O\left(\epsilon^{3}\right)$.

The amplitude $a$ and the phase $\gamma$ are now governed by equations (35) and (36).

## 4. NUMERICAL RESULTS

In this section, numerical results for free vibrations are first presented. Then forced vibrations with damping are considered.

## 4.1. free vibrations

One can begin by calculating the natural frequencies from equation (15),

$$
\begin{equation*}
\omega=\sqrt{\beta^{4}+\alpha_{1}}, \tag{39}
\end{equation*}
$$

H. R. ÖZ $E T A L$.

Table 1
The first five natural frequencies corresponding to different linear coefficients of the elastic foundation

| $\alpha_{1}$ | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ | $\omega_{5}$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $12 \cdot 0877$ | $39 \cdot 4783$ | $88 \cdot 8264$ | $157 \cdot 9137$ | $246 \cdot 7401$ |
| 10 | $12 \cdot 4945$ | $39 \cdot 6048$ | $88 \cdot 8827$ | $157 \cdot 9453$ | $246 \cdot 7604$ |
| 50 | $14 \cdot 0041$ | $40 \cdot 1066$ | $89 \cdot 1074$ | $158 \cdot 0719$ | $246 \cdot 8414$ |
| 100 | $15 \cdot 6880$ | $40 \cdot 7252$ | $89 \cdot 3876$ | $158 \cdot 2210$ | $246 \cdot 9427$ |
| 500 | $25 \cdot 4188$ | $45 \cdot 3711$ | $91 \cdot 5979$ | $158 \cdot 4890$ | $247 \cdot 7513$ |

and substituting for $\beta$ from equations (19) and (20), yields
$\omega=\sqrt{\frac{3}{2} \pi^{4}+\alpha_{1}}, \quad n=1, \quad b \neq 0, \quad \omega=\sqrt{n^{4} \pi^{4}+\alpha_{1}}, \quad n \neq 1, \quad b=0, \quad(40,41)$
for different $\alpha_{1}$ (linear dimensionless coefficient of the elastic foundation) values. The first five frequencies are given in Table 1 for $\alpha_{1}=0,10,50,100$ and 500 . Next the non-linear frequency corrections to these linear ones, which are amplitude dependent, are calculated.


Figure 7. Frequency-response curves for the first mode. $\alpha_{1}=10, \mu=0 \cdot 2, f=5: \alpha_{2}=0:(-) ; \alpha_{2}=10(--)$; $\alpha_{2}=50(--) ; \alpha_{2}=100(---)$.


Figure 8. Frequency-response curves for the second mode. $\alpha_{2}=10, \mu=0 \cdot 2, f=10: \alpha_{1}=0:(-) ; \alpha_{1}=10(--)$; $\alpha_{1}=50(---) ; \alpha_{1}=100(---)$.

Returning to equations (35) and (36), one takes $\sigma=0, \mu=0, f=0, \gamma=-\theta$. From equation (36) one obtains $a=a_{0}$, a constant amplitude. Substituting this further into equation (35) yields

$$
\begin{equation*}
\theta^{\prime}=\lambda a_{0}^{2} / 8 \omega . \tag{42}
\end{equation*}
$$

The non-linear frequency is

$$
\begin{equation*}
\omega_{n 1}=\omega+\theta^{\prime}=\omega+\lambda a_{0}^{2} / 8 \omega \tag{43}
\end{equation*}
$$

In Tables 2 and 3 , $\lambda$ values are given for the cases $n=1$ and $n=2$, respectively, corresponding to linear and non-linear elastic foundation coefficients. From the tables, for the first mode $(n=1)$, for sufficiently low values, softening behaviour can be observed (negative $\lambda$ ), whereas for the second mode $(n=2)$ only hardening behaviour can be observed. In Table 4, for $n=1$ and $n=2$, critical values of $\alpha_{1}$ and $\alpha_{2}$ making $\lambda=0$ are given. These values represent the transition from softening behaviour to hardening behaviour. Note that for the second mode, the non-linear elastic coefficient should be of softening type to observe overall softening behaviour.

In Figures 2 and 3, the non-linear frequencies versus amplitudes are shown for the first mode $(n=1)$. One can observe a transition from softening behaviour to hardening

Table 2
$\lambda$ values corresponding to $\alpha_{1}$ and $\alpha_{2}$ values for $n=1$

| $n=1$ | $\alpha_{1}=0$ | $\alpha_{1}=10$ | $\alpha_{1}=50$ | $\alpha_{1}=100$ | $\alpha_{1}=500$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\alpha_{2}=0$ | $-97 \cdot 409$ | $-81 \cdot 810$ | $-35 \cdot 322$ | 1.538 | $91 \cdot 043$ |
| $\alpha_{2}=10$ | -52.409 | $-36 \cdot 810$ | 9.678 | 46.538 | $136 \cdot 043$ |
| $\alpha_{2}=50$ | 127.591 | $143 \cdot 190$ | 189.678 | 226.538 | 316.043 |
| $\alpha_{2}=100$ | 352.591 | $368 \cdot 190$ | 414.678 | 451.538 | $541 \cdot 043$ |
| $\alpha_{2}=500$ | 2152.591 | $2168 \cdot 190$ | 2214.678 | 2251.538 | 2341.043 |

Table 3
$\lambda$ values corresponding to $\alpha_{1}$ and $\alpha_{2}$ values for $n=2$

| $n=2$ | $\alpha_{1}=0$ | $\alpha_{1}=10$ | $\alpha_{1}=50$ | $\alpha_{1}=100$ | $\alpha_{1}=500$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{2}=0$ | 1824.531 | 1857.779 | 1956.834 | 2035.326 | 2225.329 |
| $\alpha_{2}=10$ | 1869.531 | 1902.779 | 2001.834 | 2080.326 | 2270.329 |
| $\alpha_{2}=50$ | 2049.531 | 2082.779 | 2181.834 | 2260.326 | 2450.329 |
| $\alpha_{2}=100$ | 2274.531 | 2307.779 | 2406.834 | 2485.326 | 2675.329 |
| $\alpha_{2}=500$ | 4074.531 | 4107.779 | 4206.834 | 4285.326 | 4475.329 |

Table 4
$\alpha_{1}$ and $\alpha_{2}$ values making $\lambda=0$

|  |  | $\alpha_{1}=0$ | $\alpha_{1}=10$ | $\alpha_{1}=50$ | $\alpha_{1}=100$ | $\alpha_{1}=500$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $n=1$ | $\alpha_{2}$ | 21.646 | $18 \cdot 180$ | $7 \cdot 849$ | -0.342 | $-20 \cdot 232$ |
| $n=2$ | $\alpha_{2}$ | -405.451 | -412.839 | -434.852 | -452.294 | -494.517 |

behaviour; the frequencies decrease with amplitude in softening behaviour and increase with amplitude in hardening behaviour. Figure 2 shows the comparison of non-linear frequencies for various $\alpha_{1}$ values. From this figure, as $\alpha_{1}$ increases, the non-linear frequencies increase. In Figure 3, $\alpha_{1}$ is fixed and $\alpha_{2}$ is increased. The non-linear frequencies increase in this case. In Figures 4 and 5, the non-linear frequency versus amplitudes are shown for the second mode $(n=2)$. One can observe a hardening behaviour: that is, the frequencies increase with amplitude. In Figure 4 one observes that as $\alpha_{1}$ increases the non-linear frequencies increase. In Figure 5, $\alpha_{1}$ is fixed and $\alpha_{2}$ is increased, and again it can be seen that the non-linear frequencies increase.

### 4.2. FORCED VIBRATIONS WITH DAMPING

To consider forced vibrations with damping one returns again to the amplitude and phase modulation equations given in equations (35) and (36), but now searches for the steady state periodic solutions. Requiring that $a^{\prime}=\gamma^{\prime}=0$ and eliminating $\gamma_{n}$ between the equations yields

$$
\begin{equation*}
\sigma=\left(\lambda a^{2} / 8 \omega\right) \pm \sqrt{\frac{1}{4}\left(f^{2} / a^{2} \omega^{2}\right)-\mu^{2}} . \tag{44}
\end{equation*}
$$

In Figures 6 and 7, for the first mode, the frequency-response curves are shown. $\sigma$ is defined in equation (28) and represents the nearness of the external excitation frequency to the natural frequency. In Figure 6, the variation of $\sigma$ with amplitude for various $\alpha_{1}$


Figure 9. Frequency-response curves for the second mode. $\alpha_{1}=10, \mu=0 \cdot 2, f=10: \alpha_{2}=0:(-) ; \alpha_{2}=10(--)$; $\left.\alpha_{2}=50(---) ; \alpha_{2}=100(--)\right)$.
values when $\alpha_{2}$ is fixed is shown. As $\alpha_{1}$ increases, the multivalued regions causing the well-known jump phenomena decrease. The maximum amplitudes follow the same trend also. For Figure 7, $\alpha_{1}$ is fixed this time and $\alpha_{2}$ is increased. $\alpha_{2}$ has a direct contribution to the non-linearities and the multivalued regions increase considerably without an increase in the maximum amplitudes. A transition occurs from softening behaviour to hardening behaviour. In Figures 8 and 9, for $n=2$, the frequency-response curves are shown. In Figure $8, \alpha_{2}$ is fixed and $\alpha_{1}$ is increased. All curves show hardening behaviour. In Figure 9, $\alpha_{1}$ is fixed and $\alpha_{2}$ is increased. The multivalued regions increase considerably without an increase in the maximum amplitude.

Finally, the softening behaviour observed for the first mode in the absence of elastic foundation was also reported in Rehfield [7]. He also reported that when $r=\sqrt{3 / \pi}$ ( $r$ defined in his paper) a transition from softening to hardening behaviour occurs. An equivalent $r$ can be calculated for our case. We found that $r=1 / \sqrt{\pi}$. Therefore one is in the softening region in agreement with Rehfield [7].

Note that if the initial curvature function and the vibrations are chosen to be of the same order, then one is assuming that the curvature function is appreciably small: that is, the beam would have characteristics similar to those of a straight beam. Hence, one expects
that the hardening behaviour of the straight beam would be retrieved for this type of ordering.

## 5. CONCLUDING REMARKS

A simply supported slightly curved beam resting on a non-linear elastic foundation has been considered. The end supports are immovable causing axial stretching during the vibrations. The non-linearities arise due to stretching, curvature and the non-linear elastic foundation. The equations of motion have been written for an arbitrary curvature function with damping and forcing terms included. Approximate analytical solutions have been sought by using the method of multiple scales, a peturbation technique. The non-linear frequencies and the frequency response curves have been drawn for different elastic foundation coefficients, a sinusoidal curvature function being assumed.

In agreement with the previous literature [7-9], softening behaviour due to the curvature function has been found for the first mode. However, the non-linear elastic foundation has a reverse effect (for a hardening foundation) and for sufficiently high foundation coefficients the softening behaviour may be suppressed by the hardening effects of the foundation. For the second mode the curvature effects are of hardening type only.

## ACKNOWLEDGMENT

This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under project no: TBAG-1346.

## REFERENCES

1. S. Woinowsky-Krieger 1950 ASME Journal of Applied Mechanics 38, 35-36. The effect of an axial force on the vibration of hinged bars.
2. A. H. Srinivasan 1965 AIAA Journal 3, 1951-1953. Large amplitude-free oscillations of beams and plates.
3. B. G. Wrenn and J. Mayers 1970 AIAA Journal 8, 1718-1720. Nonlinear beam vibration with variable axial boundary restraint.
4. A. H. Nayfer and D. T. Mook 1979 Nonlinear Oscillations. New York: Wiley.
5. M. Pakdemirli and A. H. Nayfeh 1994 ASME Journal of Vibration and Acoustics 116, 433-439. Nonlinear vibrations of a beam-spring-mass system.
6. E. Özkaya, M. Pakdemirli and H. R. Öz 1997 Journal of Sound and Vibration 199(4), 679-696. Non-linear vibrations of a beam-mass system under different boundary conditions.
7. L. W. Reffield 1974 AIAA Journal 12, 91-93. Nonlinear flexural oscillations of shallow arches.
8. P. N. Singh and S. M. J. Ali 1975 Journal of Sound and Vibration 41, 275-282. Nonlinear vibration of a moderately thick shallow clamped arch.
9. N. Yamaki and A. Mori 1980 Journal of Sound and Vibration 71, 333-346. Nonlinear vibrations of a clamped beam with initial deflection and initial axial displacement, Part 1: Theory.
10. A. H. Nayfeh 1981 Introduction to Perturbation Techniques. New York: Wiley.
11. A. H. Nayfeh, J. F. Nayfeh and D. T. Mook 1992 Nonlinear Dynamics 3, 145-162. On methods for continuous systems with quadratic and cubic nonlinearities.
12. M. Pakdemirli 1994 Mechanics Research Communications 21, 203-208. A comparison of two perturbation methods for vibrations of systems with quadratic and cubic nonlinearities.
13. M. Pakdemirli, S. A. Nayfeh and A. H. Nayfeh 1995 Nonlinear Dynamics 8, 65-83. Analysis of one-to-one autoparametric resonances in cables: discretization vs. direct treatment.
14. A. H. Nayfeh, S. A. Nayfeh and M. Pakdemirli 1995 in Nonlinear Dynamics and Stochastic Mechanics (N. S. Namachchivaya and W. Kleimann, editors), 175-200. Boca Raton, FL: CRC Press. On the discretization of weakly nonlinear spatially continuous systems.
15. M. Pakdemirli and H. Boyaci 1995 Journal of Sound and Vibration 186, 837-845. Comparison of direct-perturbation methods with discretization-perturbation methods for non-linear vibrations.
16. A. H. Nayfeh and S. A. Nayfer 1995 Transactions of the American Society of Mechanical Engineers, Journal of Vibration and Acoustics 117, 199-205. Nonlinear normal modes of a continuous system with quadratic nonlinearities.
17. A. H. Nayfer and S. A. Nayfer 1994 Transactions of the American Society of Mechanical Engineers, Journal of Vibration and Acoustics 116, 129-136. On nonlinear modes of continuous systems.
18. M. Pakdemirli and H. Boyaci 1997 Journal of Sound and Vibration 199, 825-832. The direct-perturbation method versus the discretization-perturbation method: linear systems.
19. M. Pakdemirli and A. G. Ulsoy 1997 Journal of Sound and Vibration 203, 815-832. Stability analysis of an axially accelerating string.

## APPENDIX: NOTATION

| $\rho$ | beam density |
| :---: | :---: |
| $A$ | beam cross-section |
| $w^{*}$ | displacement |
| $E$ | Young's modulus |
| I | moment of inertia |
| $\mu^{*}$ | damping coefficient |
| $k_{1}$ | linear coefficient of elastic foundation |
| $k_{2}$ | non-linear coefficient of elastic foundation |
| $L$ | projected length of beam |
| $Z_{0}^{*}$ | curvature function |
| $x^{*}$ | spatial variable |
| $t^{*}$ | time |
| $F^{*}$ | amplitude of excitation |
| $\Omega^{*}$ | frequency of excitation |
| $x$ | dimensionless spatial variable |
| $t$ | dimensionless time |
| $r$ | radius of gyration |
| w | dimensionless displacement |
| $Z_{0}$ | dimensionless curvature function |
| $\bar{\mu}$ | dimensionless damping coefficient |
| $\alpha_{1}$ | dimensionless linear coefficient of elastic foundation |
| $\alpha_{2}$ | dimensionless non-linear coefficient of elastic foundation |
| $\bar{F}$ | dimensionless amplitude of excitation |
| $\Omega$ | dimensionless frequency of excitation |
| $\epsilon$ | perturbation parameter |
| $w_{1}$ | $O(\epsilon)$ solution |
| $w_{2}$ | $O\left(\epsilon^{2}\right)$ solution |
| $w_{3}$ | $O\left(\epsilon^{3}\right)$ solution |
| $T_{0}$ | fast time scale |
| $T_{1,2}$ | slow time scales |
| $F$ | ordered amplitude of excitation |
| $\mu$ | ordered damping coefficient |
| $D_{0}$ | derivative with respect to fast time scale |
| $D_{1,2}$ | derivatives with respect to slow time scales |
| A | complex amplitude |
| $\omega$ | natural frequency |
| $Y$ | mode shape |
| $\sigma$ | detuning parameter |
| $\phi_{1}, \phi_{2}$ | parts of solution $w_{2}$ related to secular terms |
| $\varphi$ | part of solution $w_{3}$ related to secular terms |
| W | parts of solution $w_{3}$ related to non-secular terms |
| $b$ | coefficients related to curvature function |
| $f$ | coefficient related to excitation amplitude |
| $a$ | real amplitude |
| $\gamma$ | phase |
| $\omega_{n l}$ | non-linear frequencies |

