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In this study, non-linear vibrations of slightly curved beams are investigated. The
curvature is taken as an arbitrary function of the spatial variable. The initial displacement
is not due to buckling of the beam, but is due to the geometry of the beam itself. The ends
of the curved beam are on immovable simple supports and the beam is resting on a
non-linear elastic foundation. The immovable end supports result in the extension of the
beam during the vibration and hence introduces further non-linear terms to the equations
of motion. The integro-differential equations of motion are solved analytically by means
of direct application of the method of multiple scales (a perturbation method). The
amplitude and phase modulation equations are derived for the case of primary resonances.
Both free and forced vibrations with damping are investigated. Effect of non-linear elastic
foundation as well as the effect of curvature on the vibrations of the beam are examined.
It is found that the effect of curvature is of softening type. For sufficiently high values of
the coefficients, the elastic foundation may suppress the softening behaviour resulting in
a hardening behaviour of the non-linearity.
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1. INTRODUCTION

The vibrations of beams under immovable end conditions have been studied in detail. The
immovable ends cause extensions axially in the beam which introduces integral type cubic
non-linearities into the equations of motion. For straight beams, the pioneering work is
due to Woinowsky-Krieger [1] who investigated the free oscillations of a bar having an
initial tensile force. Srinivasan [2] applied the Ritz–Galerkin technique to analyse the large
amplitude of free oscillation of beams and plates with stretching. In addition to stretching,
Wrenn and Mayers [3] included the effects of transverse shear and rotary inertia. Nayfeh
and Mook [4] reviewed the relevant work up to 1979. Pakdemirli and Nayfeh [5]
investigated a beam–mass–spring system where the non-linearities arise due to stretching
and non-linear spring supporting the mass. Recently Özkaya et al. [6] investigated a
concentrated mass on a Euler–Bernoulli beam which was supported by immovable end
conditions leading to stretching during the vibrations.

The effect of stretching has also been included in the vibrations of slightly curved beams
or shallow arcs. Among the many contributions in this area, a few of them are mentioned
here: Rehfield [7] derived the equations of motion of a shallow arch with an arbitrary rise
function and studied the free vibrations approximately. A moderately thick clamped beam
with a sinusoidal rise function is studied by Singh and Ali [8]. Finally, Yamaki and Mori
[9] analysed a clamped buckled beam by considering the first three symmetric modes and
used a combination of Galerkin and Harmonic Balance methods.
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Figure 1. A simply supported slightly curved beam resting on a non-linear elastic foundation.

This study, is concerned with a simply supported slightly curved beam resting on an
elastic foundation with cubic non-linearities. The equations of motion due to Rehfield [7]
are modified by adding damping, forcing and non-linear elastic foundation terms. The
initial curvature of the beam is not due to buckling; rather, the beam is considered to be
fabricated with slight curvature. The equations of motion are solved by the method of
multiple scales, a perturbation technique. With the curvature function assumed to be of
order 1 and the amplitude of vibrations to be of order e, the amplitude and phase
modulation equations are derived. Free vibrations and forced vibrations with damping are
investigated in detail. The effects of the elastic foundation, axial stretching and curvature
on the vibrations of the beam are analysed. It is found that the non-linearities due to
curvature are of softening type whereas those of elastic foundation are of hardening type.

2. EQUATIONS OF MOTION

The system considered is a simply supported slightly curved beam resting on a non-linear
elastic foundation as shown in Figure 1. For the beam shown, A is the cross-section of
the beam, I is the moment of inertia of the beam cross-section with respect to the neutral
axis, r is the density, w* is the transverse displacement, Z*0 (x*) is the arbitrary initial rise
function, k1 and k2 are the linear and non-linear coefficients of the elastic foundation,
respectively, and L is the projected length of the beam (a list of notation is given in the
Appendix). Following Rehfield [7], one can write the equations of motion as

rAẅ*+EIw*iv + m*ẇ*+ k1 w*+ k2 w*3

=
EA
L g

L

0

(Z*'0 w*'+ 1
2 w*'2) dx*(w*0+Z*00 )+F* cos V*t* (1)

Here damping, forcing and non-linear elastic foundation terms are included. x* is the
spatial variable along the projected length and t* denotes time. ()' represents derivatives
with respect to the spatial variable and (·) represents derivatives with respect to time.

For convenience, the equations are made dimensionless by defining

x= x*/L, t=(r/L2)zE/rt*, w=w*/r, Z0 =Z*0 /r, (2)
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where r is the radius of gyration of the beam cross-section. Substituting dimensionless
quantities (2) into equation (1), one obtains the dimensionless form of the equation:

ẅ+wiv +2m̄ẇ + a1 w+ a2 w3 =F� cos Vt+g
1

0

(Z'0 w'+ 1
2 w'2) dx(Z00 +w0). (3)

Here new dimensionless parameters are defined as follows:

2m̄= m*L2/AzrE , F� =F*L4/EIr, V=V*(L2/r)zr/E ,

a1 = k1 L4/EI, a2 = k2 L4/EA. (4)

The boundary conditions for the problem are

w(0, t)=w0(0, t)=w(1, t)=w0(1, t)=0. (5)

3. ANALYTICAL SOLUTION

To seek approximate analytical solutions of equation (3) subject to boundary conditions
(5), the method of multiple scales (a perturbation technique) [10] is used. This method is
applied directly to the partial differential system (direct-perturbation method). The
common method of discretizing the equations first and then applying perturbations yields
less accurate results for finite mode truncations and higher order perturbation schemes
[11–18]. When the eigenvalues are not orthogonal, the direct-perturbation method is still
applicable. In contrast, a transformation to another form for the equations is necessary
for the discretization perturbation method [19]. Solutions are assumed to be of the form

w(x, t, e)= ew1 (x, T0, T1, T2)+ e2w2 (T0, T1, T2)+ e3w3 (x, T0, T1, T2)+. . . . , (6)

where e is a small parameter indicating that the amplitudes of vibrations are small (weakly
non-linear system) and T0 = t, T1 = et, and T2 = e2t are the usual fast and slow time scales
in the multiple scales method. The primary resonance case is considered and it is further
assumed that Z0 (x) is or order one: that is,

F� = e3F, m̄= e2m, Z0 0O(1). (7)

Note that, excitation amplitude and damping are reordered so that their effects balance
the cubic non-linearities. Derivatives with respect to time are written as follows:

d/dt=D0 + eD1 + e2D2 + . . . . , d2/dt2 =D2
0 +2eD0 D1 + e2(D2

1 +2D0 D2)+. . . . (8)

In these equations Dn = 1/1Tn . Substituting expressions (6)–(8) into equation (3) and
separating each order of e, one obtains the following:

order e,

D2
0 w1 +wiv

1 + a1 w1 −Z00 g
1

0

Z'0 w'1 dx=0; (9)

order e2,

D2
0 w2 +wiv

2 + a1 w2 −Z00 g
1

0

Z'0 w'2 dx= 1
2 Z00 g

1

0

w'21 dx+w01 g
1

0

Z'0 w'1 dx−2D0 D1 w1 ; (10)
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order e3,

D2
0 w3 +wiv

3 + a1 w3 −Z00 g
1

0

Z'0 w'3 dx=w01 g
1

0

(Z'0 w'2 + 1
2 w'21 ) dx+w02 g

1

0

Z'0 w'1 dx

+Z00 g
1

0

w'1 w'2 dx+F cos VT0 −2D0 D1 w2 −2mD0 w1 − (2D0 D2 +D2
1 )w1 − a2 w3

1 .

(11)

At order e, the solution may be represented by

w1 (x, T0, T1, T2)= {A(T1, T2) eivT0 + cc}Y(x), (12)

where cc denotes the complex conjugates of the preceeding terms. The mode shapes satisfy
the following differential system:

Yiv − b4Y−Z00 g
1

0

Z'0 Y' dx=0, Y(0)=Y0(0)=Y(1)=Y0(1)=0. (13, 14)

Here b4 is defined to be

b4 =v2 − a1. (15)

Defining

b=g
1

0

Z'0 Y' dx (16)

one has

Yiv − b4Y− bZ00 =0. (17)

By choosing a sinusoidal curvature function

Z0 = sin px (18)

the solutions can be obtained for two different cases. If b=0, the solutions are

Y=C sin npx, b= np, n=2, 3, 4, . . . . (19)

If b$ 0 then the solution is

Y=C sin px, b=z4 3/2p. (20)

From the solvability condition at order e2 (see details of finding solvability conditions
in reference [10]) one obtains

D1 A=0, A=A(T2). (21)
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Figure 2. Non-linear frequency versus amplitude for the first mode. a2 =10: a1 =0 (––); a1=10 (- - -); a1 =50
(– – –); a1 =100 (— — —).

A solution can be written at this order of the form

w2 = (A2 e2ivT0 + cc)f1 (x)+2AA�f2 (x). (22)

If one normalizes the eigenfunctions at order e by requiring f1
0 Y2 dx=1, one has

Y(x)=z2 sin npx. (23)

Substituting equation (22) into equation (10) yields

fiv
1 − (4v2 − a1)f1 −Z00 g

1

0

Z'0 f'1 dx= 1
2 Z00 g

1

0

Y'2 dx+Y0 g
1

0

Z'0 Y' dx,

fiv
2 + a1 f2 −Z00 g

1

0

Z'0 f'2 dx= 1
2 Z00 g

1

0

Y'2 dx+Y0 g
1

0

Z'0 Y' dx,

fi (0)=0, fi (1)=0, f0i (0)=0, f0i (1)=0, i=1, 2. (24)
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For the case b=0(n$ 1) the mode shapes at this order are

f1 =
n2p4

(8n4 −3)p4 +6a1
sin px, f2 =−

n2p4

3p4 +2a1
sin px, n=2, 3, . . . , (25)

and for case b$ 0(n=1)

f1 =
p4

3p4 +2a1
sin px, f2 =−

3p4

3p4 +2a1
sin px, n=1. (26)

The solution at order e3 is written as

w3 (x, T0, T2)=8(x, T2) eivT0 +W(x, T0, T2)+ cc. (27)

The excitation frequency is taken as

V=v+ e2s. (28)

Figure 3. Non-linear frequency versus amplitude for the first mode. a1 =10: a2 =0 (––); a2=10 (- - -); a2 =50
(– – –); a2 =100 (— — —).
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Figure 4. Non-linear frequency versus amplitude for the second mode. a2 =10: a1 =0 (––); a1=10 (- - -);
a1 =50 (– – –); a1 =100 (— — —).

Here s is a detuning parameter of O(1), 8 is the function for the secular terms and W
is the function for the non-secular terms. Inserting expressions (28), (27), (22) and (12) into
equations (11) and considering only the terms producing secularities, one has

8iv −(v2 − a1)8−Z00 g
1

0

Z'0 8' dx=−2ivY(D2 A+ mA)+
F
2

eisT2

+A2A�(−3a2 Y3 + b4 Y0+2b5 Y0+ b(f01 +2f02 )+ 3
2 n2p2Y0+ b2 Z00 +2b3 Z00 ), (29)

8(0)=0, 8(1)=0, 80(0)=0, 80(1)=0, (30)

where

f=g
1

0

FY dx, b=g
1

0

Y'Z'0 dx, b1 =g
1

0

Y4 dx, b2 =g
1

0

Y'f'1 dx,

b3 =g
1

0

Y'f'2 dx, b4 =g
1

0

Z'0 f'1 dx, b5 =g
1

0

Z'0 f'2 dx, g
1

0

Y2 dx=1. (31)
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The homogeneous problem of equations (13) and (14) possesses a non-trivial solution. For
the non-homogeneous problem of equations (29) and (30) to possess a solution, a
solvability condition should be satisfied (see reference [10] for details of calculating this
condition). For the present problem, the solvability condition requires

2iv(mA+A')+ lA2A�− 1
2 f eisT2 =0, (32)

where

l=3a2 b1 +2bb2 +4b2 b3 + 3
2 n4p4 + n2p2b4 +2n2p2b. (33)

Equation (32) represents the modulations in the complex amplitudes. If one writes them
in the polar form

A(T2)= 1
2 a(T2) eiu(T2), (34)

substitutes into equation (32) and separates real and imaginary parts, one finally obtains

vag'= a(vs− la2/8)+ 1
2 f cos g, va'=−vma+ 1

2 f sin g, (35, 36)

Figure 5. Non-linear frequency versus amplitude for the second mode. a1 =10: a2 =0 (––); a2=10 (- - -);
a2 =50 (– – –); a2 =100 (— — —).
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Figure 6. Frequency-response curves for the first mode. m=0·2, f=5, a2 =10: a1 =0 (––); a1=10 (- - -);
a1 =50 (– – –); a1 =100 (— — —).

where g is defined to be

g= sT2 − u, (37)

The response is found by substituting equations (37), (34), (28), (23), (22) and (12) into
equation (6), and is

w(x, t)= ea cos (Vt− g)z2 sin npx+ e2(a2/2) (cos [2(Vt− g)]f1 (x)+f2 (x))+O(e3).

(38)

The amplitude a and the phase g are now governed by equations (35) and (36).

4. NUMERICAL RESULTS

In this section, numerical results for free vibrations are first presented. Then forced
vibrations with damping are considered.

4.1.  

One can begin by calculating the natural frequencies from equation (15),

v=zb4 + a1, (39)
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T 1

The first five natural frequencies corresponding to different linear coefficients of the elastic
foundation

a1 v1 v2 v3 v4 v5

0 12·0877 39·4783 88·8264 157·9137 246·7401
10 12·4945 39·6048 88·8827 157·9453 246·7604
50 14·0041 40·1066 89·1074 158·0719 246·8414

100 15·6880 40·7252 89·3876 158·2210 246·9427
500 25·4188 45·3711 91·5979 158·4890 247·7513

and substituting for b from equations (19) and (20), yields

v=z3
2 p4 + a1, n=1, b$ 0, v=zn4p4 + a1, n$ 1, b=0, (40, 41)

for different a1 (linear dimensionless coefficient of the elastic foundation) values. The first
five frequencies are given in Table 1 for a1 =0, 10, 50, 100 and 500. Next the non-linear
frequency corrections to these linear ones, which are amplitude dependent, are calculated.

Figure 7. Frequency-response curves for the first mode. a1 =10, m=0·2, f=5: a2 =0: (––); a2=10 (- - -);
a2 =50 (– – –); a2 =100 (— — —).
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Figure 8. Frequency-response curves for the second mode. a2 =10, m=0·2, f=10: a1 =0: (––); a1=10 (- - -);
a1 =50 (– – –); a1 =100 (— — —).

Returning to equations (35) and (36), one takes s=0, m=0, f=0, g=−u. From
equation (36) one obtains a= a0, a constant amplitude. Substituting this further into
equation (35) yields

u'= la2
0 /8v. (42)

The non-linear frequency is

vn1 =v+ u'=v+ la2
0 /8v. (43)

In Tables 2 and 3, l values are given for the cases n=1 and n=2, respectively,
corresponding to linear and non-linear elastic foundation coefficients. From the tables, for
the first mode (n=1), for sufficiently low values, softening behaviour can be observed
(negative l), whereas for the second mode (n=2) only hardening behaviour can be
observed. In Table 4, for n=1 and n=2, critical values of a1 and a2 making l=0 are
given. These values represent the transition from softening behaviour to hardening
behaviour. Note that for the second mode, the non-linear elastic coefficient should be of
softening type to observe overall softening behaviour.

In Figures 2 and 3, the non-linear frequencies versus amplitudes are shown for the first
mode (n=1). One can observe a transition from softening behaviour to hardening
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T 2

l values corresponding to a1 and a2 values for n=1

n=1 a1 =0 a1 =10 a1 =50 a1 =100 a1 =500

a2 =0 −97·409 −81·810 −35·322 1·538 91·043
a2 =10 −52·409 −36·810 9·678 46·538 136·043
a2 =50 127·591 143·190 189·678 226·538 316·043
a2 =100 352·591 368·190 414·678 451·538 541·043
a2 =500 2152·591 2168·190 2214·678 2251·538 2341·043

T 3

l values corresponding to a1 and a2 values for n=2

n=2 a1 =0 a1 =10 a1 =50 a1 =100 a1 =500

a2 =0 1824·531 1857·779 1956·834 2035·326 2225·329
a2 =10 1869·531 1902·779 2001·834 2080·326 2270·329
a2 =50 2049·531 2082·779 2181·834 2260·326 2450·329
a2 =100 2274·531 2307·779 2406·834 2485·326 2675·329
a2 =500 4074·531 4107·779 4206·834 4285·326 4475·329

T 4

a1 and a2 values making l=0

a1 =0 a1 =10 a1 =50 a1 =100 a1 =500

n=1 a2 21·646 18·180 7·849 −0·342 −20·232
n=2 a2 −405·451 −412·839 −434·852 −452·294 −494·517

behaviour; the frequencies decrease with amplitude in softening behaviour and increase
with amplitude in hardening behaviour. Figure 2 shows the comparison of non-linear
frequencies for various a1 values. From this figure, as a1 increases, the non-linear
frequencies increase. In Figure 3, a1 is fixed and a2 is increased. The non-linear frequencies
increase in this case. In Figures 4 and 5, the non-linear frequency versus amplitudes are
shown for the second mode (n=2). One can observe a hardening behaviour: that is, the
frequencies increase with amplitude. In Figure 4 one observes that as a1 increases the
non-linear frequencies increase. In Figure 5, a1 is fixed and a2 is increased, and again it
can be seen that the non-linear frequencies increase.

4.2.    

To consider forced vibrations with damping one returns again to the amplitude and
phase modulation equations given in equations (35) and (36), but now searches for the
steady state periodic solutions. Requiring that a'= g'=0 and eliminating gn between the
equations yields

s=(la2/8v)2z1
4 ( f 2/a2v2)− m2. (44)

In Figures 6 and 7, for the first mode, the frequency-response curves are shown. s is
defined in equation (28) and represents the nearness of the external excitation frequency
to the natural frequency. In Figure 6, the variation of s with amplitude for various a1
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Figure 9. Frequency-response curves for the second mode. a1 =10, m=0·2, f=10: a2 =0: (––); a2=10 (- - -);
a2 =50 (– – –); a2 =100 (— — —).

values when a2 is fixed is shown. As a1 increases, the multivalued regions causing the
well-known jump phenomena decrease. The maximum amplitudes follow the same trend
also. For Figure 7, a1 is fixed this time and a2 is increased. a2 has a direct contribution
to the non-linearities and the multivalued regions increase considerably without an increase
in the maximum amplitudes. A transition occurs from softening behaviour to hardening
behaviour. In Figures 8 and 9, for n=2, the frequency–response curves are shown. In
Figure 8, a2 is fixed and a1 is increased. All curves show hardening behaviour. In Figure 9,
a1 is fixed and a2 is increased. The multivalued regions increase considerably without an
increase in the maximum amplitude.

Finally, the softening behaviour observed for the first mode in the absence of elastic
foundation was also reported in Rehfield [7]. He also reported that when r=z3/p (r
defined in his paper) a transition from softening to hardening behaviour occurs. An
equivalent r can be calculated for our case. We found that r=1/zp. Therefore one is in
the softening region in agreement with Rehfield [7].

Note that if the initial curvature function and the vibrations are chosen to be of the same
order, then one is assuming that the curvature function is appreciably small: that is, the
beam would have characteristics similar to those of a straight beam. Hence, one expects
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that the hardening behaviour of the straight beam would be retrieved for this type of
ordering.

5. CONCLUDING REMARKS

A simply supported slightly curved beam resting on a non-linear elastic foundation has
been considered. The end supports are immovable causing axial stretching during the
vibrations. The non-linearities arise due to stretching, curvature and the non-linear elastic
foundation. The equations of motion have been written for an arbitrary curvature function
with damping and forcing terms included. Approximate analytical solutions have been
sought by using the method of multiple scales, a peturbation technique. The non-linear
frequencies and the frequency response curves have been drawn for different elastic
foundation coefficients, a sinusoidal curvature function being assumed.

In agreement with the previous literature [7–9], softening behaviour due to the curvature
function has been found for the first mode. However, the non-linear elastic foundation has
a reverse effect (for a hardening foundation) and for sufficiently high foundation
coefficients the softening behaviour may be suppressed by the hardening effects of the
foundation. For the second mode the curvature effects are of hardening type only.
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APPENDIX: NOTATION

r beam density
A beam cross-section
w* displacement
E Young’s modulus
I moment of inertia
m* damping coefficient
k1 linear coefficient of elastic foundation
k2 non-linear coefficient of elastic foundation
L projected length of beam
Z*0 curvature function
x* spatial variable
t* time
F* amplitude of excitation
V* frequency of excitation
x dimensionless spatial variable
t dimensionless time
r radius of gyration
w dimensionless displacement
Z0 dimensionless curvature function
m̄ dimensionless damping coefficient
a1 dimensionless linear coefficient of elastic foundation
a2 dimensionless non-linear coefficient of elastic foundation
F� dimensionless amplitude of excitation
V dimensionless frequency of excitation
e perturbation parameter
w1 O(e) solution
w2 O(e2) solution
w3 O(e3) solution
T0 fast time scale
T1,2 slow time scales
F ordered amplitude of excitation
m ordered damping coefficient
D0 derivative with respect to fast time scale
D1,2 derivatives with respect to slow time scales
A complex amplitude
v natural frequency
Y mode shape
s detuning parameter
f1, f2 parts of solution w2 related to secular terms
8 part of solution w3 related to secular terms
W parts of solution w3 related to non-secular terms
b coefficients related to curvature function
f coefficient related to excitation amplitude
a real amplitude
g phase
vnl non-linear frequencies


